Schauder estimate and Sobelov inequality

In this note we discuss the Schauder theory for uniformly elliptic linear equations and Sobelov inequality.

the three main topics ars a priori estimate in Holder norms,regularity of arbitrary solutions and the solvability of the Dirichlet problem.Among these topics,a priori estimates are the most fundamental and the basis of the follows two.we will discuss both the interior Schauder estimate and global Schauder estimate.

-Schauder Theory-

1. Interior Schauder Theory

$ {\Omega} $ be a domain in $ {R^n} $,bounded most of the time.
$ {a_{ij},b_i,c} $ be defined in $ {\Omega} $,with $ {a_{ij}=a_{ji}} $.where $ {1\leq i,j\leq n} $.
we consider the operator $ {L} $ given by,

$ Lu=a_{ij}\partial_{ij}u+b_i\partial_iu+c,in \ \Omega. $

easy to see $ {Lu} $ is defined for any $ {u\in C^2(\Omega)} $.
the operator $ {L} $ is always be assumed to be strictly elliptic in $ {\Omega} $;namely,
$ a{ij}\xi_i\xi_j \geq \lambda|\xi|^2 $

for any $ {\xi\in R^n,x\in \Omega} $,where $ {\lambda} $ is a positive constant.
1.1. Interior Schauder Estimate

define the weighted $ {C^{k,\alpha}} $ norm,

$ |u|^*_{C^{k,\alpha}(B_R)}=\sum_{i=0}^k R^i|D^iu|_{L^{\infty}(B_R)}+R^{k+\alpha}[D^ku]_{C^{\alpha}(B_R)} $

easy to see $ {R} $ come from a scaling.
consider the PDE.
$ Lu=a_{ij}\partial_{ij}u+b_i\partial_iu+c=f,in \ \Omega. $

we want to proof this type estimate,
$ |u|_{C^{2,\alpha}(A)} \leq C(|u|_{L^{\infty}(\Omega)}+|f|_{C^{\alpha}(\Omega)}) $

where $ {A\subset \Omega } $
we first deal with a easy case,$ {a_{ij}} $ is constant. in this case we proof the estimate:

Lemma 1 $ {f \in C^{\alpha}(B_R)} $,for some $ {\alpha \in (0,1)} $,and $ {(a_{ij})} $ be a constant symmetric $ {n\times n} $ matrix satisfying
$ \lambda |\xi|^2 \leq a_{ij}\xi_i\xi_j \leq \Lambda|\xi|^2 $

$ {\exists \lambda,\Lambda >0,\forall \xi \in R^n} $. suppose $ {u\in C^2(B_R)} $ satisfies:
$ a_{ij}\partial_{ij}u=f, in \ B_R $

then ,$ {u \in C^{2,\alpha}(B_{\frac{R}{2}})} $,moreover,
$ |u|^*_{C^{2,\alpha}(B_{\frac{R}{2}})}\leq C[|u|_{L^{\infty}(B_R)}+R^2|f|^*_{C^{\alpha}(B_R)}] $

Proof: $ \Box $ to continue,we prove an interpolation inequality for Holder continuous functions.

Lemma 2 Let $ {\alpha,\mu \in (0,1)} $ and $ {B_R} $ be a ball of radius $ {R} $ in $ {R^n} $,then, (1)for any $ {u\in C^{1,\alpha}(\overline B_R)} $,
$ \mu^{\alpha}R^{\alpha}[u]_{C^{\alpha}(B_R)}\leq C[\mu R |\nabla u|_{L^{\infty}(B_R)}+|u|_{L^{\infty}(B_1)}] $

(2)for any $ {u\in C^{1,\alpha}(\overline B_R)} $,
$ \mu R |\nabla u|_{L^{\infty}(B_R)} \leq C[\mu^{1+\alpha}R^{1+\alpha}|\nabla u|_{C^{\alpha}(B_R)}+|u|_{L^{\infty}(B_1)}] $

(3)for any $ {u\in C^2(\overline B_R)} $,
$ \mu R|\nabla u|_{L^{\infty}(B_R)}\leq C[\mu^2R^2|\nabla^2 u|_{L^{\infty}(B_R)}+|u|_{L^{\infty}(B_R)}] $

where $ {C} $ is a positive constant depending on n and $ {\alpha} $.
Proof: $ \Box $

Corollary 3 Let $ {\alpha,\mu\in (0,1)} $ and $ {B_R} $ be a ball of radius $ {R} $ in $ {R^n} $.Then,for any $ {u\in C^{2,\alpha}(\overline B_R)} $,
$ \sum_{i=0}^2(\mu R)^i|\nabla^i u|_{L^{\infty}(B_R)}+\sum_{i=0}^1(\mu R)^{i+\alpha}[\nabla^i u]_{C^{\alpha}(B_R)}\leq C[(\mu R)^{2+\alpha}[\nabla^2 u]_{C^{\alpha}(B_R)}+|u|_{L^{\infty}(B_R)}] $

Proof: $ \Box $

Now we are ready to prove an interior estimate for $ {C^{2,\alpha}} $-norms of solutions of uniformly elliptic equations.The trick is to freeze coefficients.

Lemma 4
2. Global Schauder Theory

 

 

 

-Sobelov inequality-

Theorem 5
$ W_0^{1,p}(\Omega)\longrightarrow L^{\frac{np}{n-p}}(\Omega),1\leq p <n $

moreover,we have: $ {\exists C=C(n,p)} $, $ {\forall u\in W^{1,p}_0(\Omega)} $,
$ ||u||_{\frac{np}{n-p}} \leq C||Du||_p,1\leq p<n $

Proof:

$ p=1 $

suffice to proof:
$ ||u||_{\frac{n}{n-1}}\leq C||Du||_1 $

obvious we have:
$ |u(x)|\leq \int_{-\infty}^{\infty}|Du(x)|dx $

so $ {\int_{\Omega} |u|^{\frac{n}{n-1}}\leq \int_{\Omega} \Pi_{i=1}^n(\int_{-\infty}^{\infty}|D_iu(x)|dx)^{\frac{1}{n-1}}} $.
so $ {||u||_{\frac{n}{n-1}}\leq (\int_{\Omega}\Pi_{i=1}^n(\int_{-\infty}^{\infty}|D_iu|)^{\frac{1}{n-1}})^{\frac{n-1}{n}}\leq \int_{\Omega} \Pi_{i=1}^n(\int_{-\infty}^{\infty}|D_iu|)^{\frac{1}{n}} \leq \int_{\Omega} \frac{1}{n} \sum_{i=1}^n(\int_{-\infty}^{\infty}|D_iu|)\leq C||Du||_1} $
$ 1<p<n $

use the similar argument as $ {p=1} $ to prove the situation $ {1<p<n} $.
suffice to prove $ {||u||_{\frac{np}{n-p}}\leq C||Du||_p} $.
obvious we have:$ {|u(x)|^p\leq \int_{-\infty}^{\infty}p|u|^{p-1}|Du|} $.
$ {(\int_{\Omega}|u(x)|^{\frac{np}{n-p}})^{\frac{n-p}{np}}} $
$ {\leq (\int_{\Omega} \Pi_{i=1}(\int_{-\infty}^{\infty} p|u|^{p-1}|D_iu| )^{\frac{1}{n-p}})^{\frac{n-p}{np}} } $
$ {\leq C\int_{\Omega} \Pi_{i=1}^n(\int_{-\infty}^{\infty}p|u|^{p-1}|D_iu|)^{\frac{1}{np}}} $
$ {\leq\frac{c}{n}\sum_{i=1}^n\int_{\Omega}(\int_{-\infty}^{\infty}p|u|^{p-1}|D_iu|)^{\frac{1}{p}}} $
$ {\leq \frac{c}{n}\sum_{i=1}^n\tilde C p[(\int_{\Omega} (|u|^{p-1})^{\frac{p}{p-1}})^{\frac{p-1}{p}}+(\int_{\Omega} |D_iu|^p)^{\frac{1}{p}}]^{\frac{1}{p}} } $
$ {\leq C||Du||_p} $. Q.E.D. $ \Box $
4.

$ W_0^{1,p}(\Omega)\longrightarrow C(\bar\Omega),n<p $

moreover,we have: $ {\exists C=C(n,p)} $, $ {\forall u\in W^{1,p}_0(\Omega)} $,
$ sup_{\Omega}|u| \leq C|\Omega|^{\frac{1}{n}-\frac{1}{p}}||Du||_p,p>n $

$ {\mu\in (0,1]} $,

$ (V_{\mu}f)(x)=\int_{\Omega}|x-y|^{n(\mu-1)}f(y)dy $

then $ {V_{\mu}: L^1(\Omega) \longrightarrow L^1(\Omega) } $ is well-defined by the following lemma:
Lemma 6 $ {V_{\mu}:L^p \longrightarrow L^q} $ continously for any q,$ {1\leq q \leq \infty} $ satisfy $ {0\leq \delta=\delta(p,q)=\frac{1}{p}-\frac{1}{q} \leq \mu} $.
furthermore,for any $ {f\in L^p(\Omega)} $
$ ||V_{\mu}f||_q \leq (\frac{1-\delta}{\mu -\delta})^{1-\delta}w_n^{1-\mu}|\Omega|^{\mu-\delta}||f||_p $

Proof: $ {h(x-y)=|x-y|^n(\mu-1)} $ directly calculate follows that :

$ ||h||_r \leq (\frac{1-\delta}{\mu -\delta})^{1-\delta} w_n^{1-\mu}|\Omega|^{\mu-\delta} $

now follows young inequality and this priori estimate we have:
$ {||V_{\mu}f||_q=(\int_{\Omega}(\int_{\Omega}|x-y|^{n(\mu-1)}f(y)dy)dx)^{\frac{1}{q}}} $
$ {\leq (\int_{\Omega}(\int_{\Omega}h^{\frac{r}{q}}h^{r(1-\frac{1}{p})}|f|^{\frac{p}{q}}|f|^{p\delta})^qdx)^{\frac{1}{q}}} $
$ {\leq (\int_{\Omega}(\int (h^r|f|^p)^{\frac{1}{q}}(\int h^r)^{1-\frac{1}{p}}(\int f^p)^{\delta})^{q})^{\frac{1}{q}}} $
$ {\Longrightarrow} $
$ ||V_{\mu}f||_q \leq sup_{x \in \Omega} \{\int h^r(x-y)dy\}^{\frac{1}{r}}||f||_p $

and by the priori estimate,we have:
$ ||V_{\mu}f||_q \leq (\frac{1-\delta}{\mu -\delta})^{1-\delta}w_n^{1-\mu}|\Omega|^{\mu-\delta}||f||_p $

Q.E.D. $ \Box $
Lemma 7 $ {f\in L^p(\Omega)} $,$ {g=V_{\mu}f} $.
$ {\Longrightarrow} $ $ {\exists c_1,c_2} $ constant depend only on $ {n,p} $,such that
$ \int_{\Omega} exp[\frac{g}{c_1||f||_p}]^{p^`}dx\leq c_2|\Omega|,p^`=\frac{p}{p-1} $

Proof: we have

$ ||g||_q \leq q^{1-\frac{1}{p}+\frac{1}{q}}w_n^{1-\frac{1}{p}}|\Omega|^{\frac{1}{q}}||f||_p $

$ {\Longrightarrow} $
$ \int_{\Omega} |g|^{p^`q}dx \leq p^`q(w_np^`q||f||_p^{p^`})^q|\Omega| $

$ {\Longrightarrow} $
$ \int_{\Omega}\sum_{N_0}^{N}\frac{1}{k!}(\frac{|g|}{c_1||f||_p})^{p^`k}\leq p^`|\Omega|\sum(\frac{p^`w_n}{c_1^p})^k\frac{k^k}{(k-1)!} $

then take $ {c_1,c_2} $ suffice large. Q.E.D. $ \Box $
Lemma 8 let $ {u\in W^{1,1}_0(\Omega)} $
$ u(x)=\frac{1}{nw_n} \int_{\Omega} \frac{(x_i-y_i)D_iu(y)}{|x-y|^n} $

a.e. in $ {\Omega} $.
Proof: frist zero extended $ {u} $ to whole space.and we have $ {u(x)=\int_{-\infty}^xD_iu(x)} $.

$ u(x)=\int_0^{\infty}D_ru(x+rw)dr $

forall $ {w\in \partial B_1(0)} $,so
$ u(x)=-\frac{1}{nw_n}\int_0^{\infty}\int_{|w|=1}D_ru(x+rw)drdw=\frac{1}{nw_n}\int_{\Omega}\frac{(x_i-y_i)D_iu(y))}{|x-y|^ndy} $

Q.E.D. $ \Box $
Theorem 9 let $ {u\in W^{1,n}_0(\Omega)} $,then there exists constant $ {c_1,c_2} $ such that
$ \int_{\Omega}exp[\frac{|u|}{c_1||Du||_n}]^{\frac{n}{n-1}}dx\leq c_2|\Omega| $

Proof: a $ \Box $

Theorem 10 $ {u\in W_0^{1,p}(\Omega),p>n} $,then $ {u\in C^{\gamma}(\Omega)} $,$ {\gamma=1-\frac{n}{p}} $.
moreover $ {\forall ball B=B_R} $
$ osc_{\Omega \cap B_R}u \leq C R^{\gamma} ||Du||_p $

Proof: a $ \Box $